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The free vibrations of an extensible flexible thread with a small sag are considered. A new form of solution of the equations of 
equilibrium of an extensible flexible thread is obtained. The differential equations of small vibrations about the equilibrium position 
are derived. An asymptotir analysis of the vibrations out of the vertical plane is carried out. It is established that these vibrations 
are close to the vibrations of a string. An asymptotic analysis of the low-frequency and high-frequency vibrations in the vertical 
plane is carried out. It is established that the natural frequencies and forms of the low-frequency vibrations depend very much 
on two small parameters: the parameter e, characterizing the sag value, and the parameter 5, characterizing the degree of 
the thread stretching. It is proved that the low-frequency transverse vibrations when e2/8 ,~ 1 are close to the vibrations 
of a string, and when ~2/8 ~" 1 they are dose to vibrations of an inextensible thread. If the quantities e2 and 8 have the same 
asymptotic order, the most representative asymptotic form is obtained. In the high-frequency region there are long- 
wave longitudinal and short-wave transverse vibrations, irrespective of the ratio of the two small parameters. More complex 
forms of vibrations also sometimes arise, characterized by interaction between the longitudinal and transverse motions. 
Asymptotic expansions, wl~ich are uniformly valid over the whole frequency range, are obtained. @ 1998 Elsevier Science Ltd. 
All rights reserved. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

We will consider  an extensible flexible thread,  the ends o f  which are c lamped at the same height  
[1-3]. The  posit ion of  a point  on  the thread is specified by the Lagrangian coord ina te  ~ ' -- this  is 
the length o f  the arc o f  the uns t re tched thread,  m e a s u r e d  f rom the lowest point  o f  the thread in the 
equilibrium configuration.  The  origin of  a Cartesian system of  coordinates  ~1~2~3 is placed at this point  
(Fig. 1). 

The  equat ion  o f  mot ion  of  the thread has the fo rm 

~2~ ~0+ (1.1) I.t ~-~'- = "~'~" q 

where R = R(~,  T) is the radius vector,  defining the posit ion o f  a point  o f  the thread in space, T is 
the time, Ix is the mass per  unit  length o f  the unst re tehed thread,  Q is the force over  the cross- 
section o f  the thread,  q = --q0e2, q0 = lag is the external load acting on unit  length o f  the uns t re tched 
thread. 

The  force in the flexible thread must  be tangential to the curve specified by the radius vector  R(~, ?),  
which is expressed by the equat ion  

aS Q × -ff = o (1.2) 

The value of the force over the cross-section of the thread is related to the relative elongation of the 
thread by Hooke's law 

where c is the thread stiffness on stretching, defined in the simplest case by the formula ? = EF, E is 
Young's modulus of 1Jae material and F is the cross-section area of the thread. 

We will introduce 1:he dimensionless variables and parameters 
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o e ,  
Fig. 1. 

R = R ,  Q =  (~ 1 , s==--,  E= 8 = - -  (1.4) 
So ~-, t=~o ~" fl 0=.~0 ~bt) s o H ' 

(s0 is the half-length of the unstretched thread and H is the tension in the thread at the lowest point 
of the equilibrium configuration). 

Eliminating the force Q from Eqs (1.1)--(1.3) and using (1.4), we obtain the equation of motion of 
the extensible flexible thread in dimensionless variables (the dot denotes a derivative with respect to t 
and the prime denotes a derivative with respect to s) 

8< IRI) (1.5) 

2. E Q U I L I B R I U M  OF THE E X T E N S I B L E  F L E X I B L E  T H R E A D  

Integrating the differential equation of equilibrium, corresponding to (1.5) when R = 0, we obtain 
the equilibrium configuration of the thread 

l / -  • . 

The unit vectors of the tangent, normal and binormal of curve (2.1) and their derivatives are given 
by the formulae 

t = R~ _ ese 2 + e 3 t' e2 - ese3 b = t x n 
I R ~ , -  ~ , n = It"'/= ~ ' = - e l  

1 1 
t' n' - ' t ,  b ' = 0  

P P 

where ; = ~/(1 + e2s2), p = ~2/e. 

(2.2) 

For an extensible flexible thread with a small sag, e and 8 are small parameters. The parameter e 
represents the sag value; it can be shown that it is proportional to the ratio of the s a g f t o  the length 
of the thread, e ~- 2f/'fo. The  parameter 8 represents the degree of stretching of the thread and is equal 
to the relative elongation of the thread at the lowest point of the equilibrium configuration. 

3. THE EQUATIONS OF SMALL V I B R A T I O N S  

For small vibrations the radius vector of a point of the thread is given by the formula 

R = Ro + u (3 .1)  

where u = u/s0 is a small dimensionless displacement from the equilibrium configuration. Lineari~ing 
the equation of motion (1.5) in the region of the equilibrium configuration, we obtain the equation of 
small vibrations of an extensible flexible thread 
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# 

! ¢(IR~)l-l)u, (R~)-u')R~) 
+ J 

(3.2) 

Specifying the vector of its displacement by theprojections along the tangent, normal and binormal, 
u = wt + ~n + ub, and substituting into (3.2) we obtain, taking (2.2) into account, the equations 

:_, 
,$pt. p) t. l+~t. 

1¢,  
w 

p(1 + 84) 

(3.3) 

the first of which de,scribes vibrations out of the vertical plane, and the second and third describe 
vibrations in the vertical plane. 

The boundary conditions have the form 

s = : l : l :  u = v = w = 0  (3.4) 

Investigating the solutions of Eqs (3.3) in the form of principal vibrations 

U = U(s )e  i~ ,  v = V(s )e  i~ ,  w = W ( s ) e  i"~ (3.5) 

we obtain the equations 

) =0 

# 

(3.6) 

4. V I B R A T I O N S  OUT OF THE VERTICAL PLANE 

Vibrations out of the vertical plane, described by the first equation of (3.6) are close to the vibrations 
of a string with a rectilinear axis and constant tension. Searching for an asymptotic expansion of the 
solution of this equation in the form 

U = U o +O(max(8,E2)), co 2 =co0z(l + O(max(8,e2))) (4.1) 

we obtain for the principal term of the expansion a differential equation which defines the vibration 
form of a string. The principal term of the asymptotic expansion of the vibration frequencies is given 
by the formula 

t~0~ = nTt t 2, n = 1, 2 .... (4.2) 

which corresponds completely to the vibration frequencies of a string with a rectilinear axis of length 
2s0, having constant tension H and a mass per unit length of IX. Note that the first frequency corresponds 
to "pendulum" vibrations of the thread. The vibration forms of the thread also correspond completely 
to the vibration forms of a string. 
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5. VIBRATIONS IN A VERTICAL PLANE 

For vibrations in a vertical plane, described by the second and third equations of (3:6), we can 
distinguish low-frequency and high-frequency vibrations. 

Low-frequency vibrations 
A preliminary asymptotic analysis showed that the low-frequency vibration form depends very much 

on the ratio of the small parameters e and 8. For a thread with a very small sag, and more accurately 
when e2/8 ~ 1, the vibrations of an extensible thread are close to the vibrations of a string. For a slightly 
stretched thread, more accurately when e2/8 >> 1, the vibrations are close to those of an inextensible 
thread. We will carry out an asymptotic analysis for the most representative case, when the quantities 
e 2 and 8 have the same asymptotic order. 

The solution of the second and third equations of (3.6) for low-frequency vibrations will be sought 
in the form 

V = V o + O(e), W = eW I + 0(~ 2), o) 2 = (02(I + O(e)) (5.1) 

For the principal terms of the asymptotic expansions we obtain the following system of differential 
equations and boundary conditions 

(w: -  Vo)' -- o;  =e2/a 
s=+l: Vo=O, Wl=O 

For symmetrical vibration forms (V0 is an even function of s and W1 is an odd function of s) the 
frequency equation has the form 

(~ / (03)sin (00 + (1 - ~ / (002)c0s(00 = 0 (5.2) 

Note that for a very small sag ( ~  1) the roots of the frequency equation 

2 m - 1  
( 0 0 , . =  2 re, m = l , 2  . . . .  (5 .3 )  

give the frequencies of symmetrical vibrations, which are identical with the corresponding frequencies 
of a string with a rectilinear axis. 

For a slightly stretched thread (~ >> 1) the frequency equation (5.2) can be written in the form 

s in (0o - (0o c o s  mo = 0 

The natural frequencies can be determined, with sufficient accuracy, from the approximate formula 

(00,. = ( 2 m  l ) n  1 -  + , m = 1 , 2  . . . .  (5.4) 

The main difference between the frequency spectrum (5.4) and (5.3) is the fact that for a slightly 
stretched thread there is no lowest frequency with number m = 1 from spectrum (5.3). This result was 
obtained previously in [1] for an inextensible thread. In the general case the natural frequencies of 
symmetrical vibrations are given by Eq. (5.2). A graph of the natural frequencies as a function of the 
ratio ~ = e 2 / ~  is given in Fig. 2. As ~ increases the frequency with number m changes gradually and for 
large ~ has a value close to the frequency with number m + 1 for small ~. 

The symmetrical vibration forms are given by the formulae 

V m = COS (00m -- COS (00,"$ 
(5.5) 

W m = - ( e .  I (00m)[( (03 , .  / ~) cos (00,. (1 - ~ / (02 , . ) s  + sin (00 , . s ]  

As the ratio ~ = ~2/8 increases the vibration forms change so that the lowest vibration form with one 
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half-wave in a span gradually changes into a form with three half-waves in a span, which is also the 
lowest form of symmetrical vibrations of a slightly stretched thread, that is shown on the right-hand 
side of Fig. 2. Note also that the string vibration form with three half-waves changes into the corres- 
ponding form with five half-waves, etc. 

The frequency equation for the antisymmetric vibration forms (V 0 is an odd function of s and W1 is 
an even function of 5) has the form 

sin o~ 0 = 0 (5.6) 

The natural frequencies for the antisyrnmetrie vibration forms are identical with the corresponding 
frequencies of a string with a rectilinear axis 

COon = mr, n = 1, 2 .... (5.7) 

while the vibration forms are given by the formulae 

V. = s i n  O~o.S, W. = (e / Oo.)(cos COo. - c o s  O~o.S ) 

Note that the vibration forms satisfy the orthogonality conditions 

I ! 

I Vo.Vo~as = o. I t v~ 'v~ ,  + ~(wi;  - Vo . ) (w: ,  - Vo,)la~ = o. 
-I  -1 

r ~ p  

(5.8) 

High-frequency vibrations 
A preliminary analysis showed that the natural forms of high-frequency vibrations are the 

superposition of slowly changing functions fs(ss), where Ss = (1 + eSs + . . . ) s  and rapidly changing 
oscillating functions f1(sf), where sf = 8-1/2(1 + e~if + ...)s. Here we have taken into account in explicit 
form the dependeni~e of the arguments of the slowly and rapidly changing functions on the small 
parameters, as is done in the Linstedt-Poincar6 method [4]. We have 

dfs I ds =(I+eSs+...)fs, dff I ds=8-1/2(l+~.Sf+...)f: 
(/:=a/,/ a~,, /:=a:: / a~:) 

The derivatives dfJ&~ s and dfjCclsf are quantities of the order of unity. For slowly varying functions, their 
derivatives with respect to s and the functions themselves are of the same asymptotic order, while for 
the rapidly varying fianctions they have a different asymptotic order. 

As a result of a preliminary analysis we established that the asymptotic expansion of the forms and 
frequencies of the vibrations have the form 

v = ~ v , + . . . + v :  .... w = w , + . . . + ~ 4 g w : . . .  

I##0 

/O -?/ 
,S 

Z .r # 

A 

/0  

4/ 

Fig. 2. 

5 /0 alo 
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2 
f02 =-~-(1+...), CO~ = 0(1) 

(5.9) 

Note that a preliminary analysis enables us to establish the relation between the asymptotic orders 
of the slowly varying components of the solution, and also the relation between the asymptotic orders 
of the rapidly varying components of the solution. The relation between the asymptotic orders of the 
slowly and rapidly varying functions will be established during the course of further constructions. 

Substituting (5.9) into the last of the two equations in (3.6), noting that if the sum of the slowly and 
rapidly varying functions is equal to zero, then each of these functions is equal to zero, and equating 
the coefficients of the lowest asymptotic order of combinations of small parameters to zero, we obtain 
the following equations for the principal terms of the asymptotic expansions of the slowly varying 
functions 

w; co2w, = 0 (5.10) 

and for the principal terms of the rapidly varying functions we obtain 

=o, - v /  + w: ' = o  (5.11) 

Substituting (5.9) into the boundary conditions we obtain 

s=+ l :  r .Vs+V/=O,  W~+e~rgW/=O (5.12) 

The frequency equation for symmetrical vibrations has the form 

For the vibration forms we have 

V m = -EfO0m c o s ~ -  COS fJ00m$ + gfl}0m COS (00m COS 
O.)oraS 

fDOm5 W m = COo 2. cos ~-~°~m sin co0.s + e 2 ~ cos co0, sin 
4g 

(5.13) 

(5.14) 

where C00m is the ruth root of frequency equation (5.13). 
The frequency equation for the antisymmetric vibrations can be written in the form 

o 0  0 COS CO 0 sin - ~  + 

The vibration forms are given by the expressions 

(5.15) 

i~ ~/-~ {lOOn fDOnS 
. O ~ o . S  __ (COS~COSfDOnS_COSfDo  n COS'---':~Z/ V. =cosfD0nSln'-~- ' - ,  W n = COOn ~, "q~b %10 J (5.16) 

where coon is the nth root of frequency equation (5.15). 
We will now analyse the results obtained. The frequency equation for the symmetrical vibrations (5.13) 

is satisfied when one or both factors on the left-hand side are small. 
When the factor sin COo,,, which is the predominant term governing the vibration form, is a small 

quantity, the term Wsm turns out to be slowly varying. Hence, in this case we obtain long-wave high- 
frequency longitudinal vibrations. 

When the factor cos (cO0,n/~8), which is the predominant term, is a small quantity, the term Vhn will 
be rapidly varying. Hence, we obtain short-wave high-frequency transverse vibrations. Note that the 
frequency density of the transverse vibrations in the high-frequency band is considerably higher than 
the frequency density of longitudinal vibrations. 
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When both factor,s on the left-hand side of frequency equation (5.13) are small, we have a more 
complex pattern, determined by the interaction between the longitudinal and transverse vibrations. 

An analysis of the frequency equation for antisymmetric vibrations (5.15) gives similar results. 
Asymptotic expan=~ions uniformly valid over the whole frequency band. We will obtain asymptotic 

expansions for the symmetrical and antisymmetrical vibrations, uniformly valid over the whole frequency 
band. 

We will first consi,rler symmetrical vibrations. The frequency equation for the low-frequency band 
(5.2) can be rewritte:a by replacing too by to in the form 

(~ / to3)sinto + (1-  ~ / to~)costo = 0 (5.17) 

The frequency equation for the high-frequency band (5.13) can be rewritten in the form 

Note that Eqs (5.17) and (5.18) retain the same asymptotic accuracy as the initial equations (5.2) 
and (5.13). Equation (5.17) holds when to = O(1), and Eq. (5.18) holds when co = O(1N~). 

Consider these equations in the intermediate region where 

1 < ordto < 11~/~ (5.19) 

The corresponding formalism (see [5]) consists of the fact that we assume 

to = ton ~ 6 (5.20) 

where the quantity t~  is fixed, while the asymptotic orders of the quantities e, 8, 1] are such that when 
e -~ 0, fi ~ 0, 1] ~ 0 the following inequalities are satisfied 

orde2<ordr l< l ,  or ¢21rl--+0 
(5.21) 

ordS<ord~< l ,  or r l / 8 - ~ * *  

Substituting (5.20) into (5.17) and (5.18) and taking the limit (5.21), we obtain the following single 
equation in the intermediate region 

cos to = 0 (5.22) 

i.e. the low-frequency and high-frequency equations match. Moreover, we can construct an asymptotic 
frequency equation, uniformly valid over the whole frequency band, by adding the left-hand sides of 
(5.17) and (5.18) andL subtracting the left-hand side of (5.22), which is valid in the intermediate region. 

For the symmetrical vibrations the uniformly valid asymptotic frequency equation has the form 

(~ / to3) sin to + (sin to'~/~ / (to'V¢~) - ~ I to2 ) cos to = 0 (5.23) 

By similar constructions we can obtain uniformly valid expressions for the symmetrical vibration 
forms 

V~, = costo m costo,'~/-~s - costo, Nr~ costom s 

~ ~ . + c°s (0m'~'g sin to.s 

(5.24) 

Note that when ¢o~n = O(1), expressions (5.24) become expressions (5.5), and when oM = O(1HS) 
they become expressions (5.14) (apart from an unimportant normalizing factor). 

Carrying out corresponding constructions for the antisymmetric vibrations, we obtain the following 
equations instead of (5.6) and (5.15) 

sinto = 0, cos t o ~  sin to = 0 (5.25) 
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which, in the intermediate region, convert into an equation identical with the first equation of 
(5.25). 

For the antisymmetric vibrations the uniformly valid asymptotic frequency equation is identical with 
the second equation of (5.25), while the uniformly valid expressions for the vibration forms can be written 
in the form 

V, = costOn X/-~ sintons, W. - -'~ (5.26) 

When o~h = O(1) expressions (5.26) become expressions (5.8), and when ton = O(1/~/~) they become 
expressions (5.16). 

We note in conclusion that a similar method of asymptotic analysis of the low-frequency and high- 
frequency vibrations and the construction of asymptotic frequency expansions that are uniformly valid 
over the whole frequency band can also be employed when investigating more complex systems, such 
as, for example, rods, plates and shells. 
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